Gopakumar-Vafa Invariant and Perverse Sheaves (based on joint work with Jun Li)

Young-Hoon Kiem

Outline

- 1 Curve counting invariants
- 2 Gopakumar-Vafa invariant
- 3 Proposals
- 4 Categorification conjecture

1 Curve counting invariants

- $Y = \text{smooth projective 3-fold over } \mathbb{C}$, $\pi_1(Y) = 0$, $h^{2,0}(Y) = 0$, $K_Y \cong \mathcal{O}_Y$.
- $\mathcal{O}_Y(1) = \text{ample line bundle}, \ 0 \neq \sigma \in H^{3,0}(Y).$
- $g \in \mathbb{Z}_{\geq 0}$, $\beta \in H_2(Y, \mathbb{Z})$.
- Expected: $\#\{\text{genus }g\text{ curves }C\text{ in }Y\text{ with }[C]=\beta\}{<}\infty.$

Curve counting invariants of Y

- ullet Expected: unchanged under deformation of Y.
- Defined as integrals on virtual fundamental classes of (compactified) moduli spaces of curves in Y which admit perfect obstruction theories. Li-Tian, Behrend-Fantechi
- Different perspectives ⇒ different compactifications ⇒ different invariants.
- Gromov-Witten, Donaldson-Thomas, Pandharipande-Thomas, Fan-Jarvis-Ruan-Witten, etc

Gromov-Witten invariant

- C = reduced curve with at worst nodal singularity
- Kontsevich $f: C \to Y$ is stable if $\operatorname{Aut}(f) < \infty$.
- $\overline{M}_g(Y,\beta) = \{ \text{stable maps to } Y, f_*[C] = \beta \}.$
- $[\overline{M}_g(Y,\beta)]^{\text{vir}} \in A_0(\overline{M}_g(Y,\beta))_{\mathbb{Q}} \xrightarrow{\#} A_0(pt)_{\mathbb{Q}} = \mathbb{Q}.$
- $N_g(\beta) = \#[\overline{M}_g(Y,\beta)]^{\text{vir}} \in \mathbb{Q}$
- GW∈ Q is not a pure curve counting: it comes with multiple cover contributions.

Donaldson-Thomas invariant I

- $C \subset Y \Rightarrow I_C = \text{ideal sheaf of } C \text{ in } Y.$
- $Hilb^P(Y) = \{ \text{ideals } I \text{ in } \mathcal{O}_Y \text{ with } \chi(\mathcal{O}_Y/I \otimes \mathcal{O}_Y(m)) = P(m) \}$ projective scheme with perf. obstr. th.: Thomas, Huybrechts.
- $[Hilb^P(Y)]^{vir} \in A_0(Hilb^P(Y))$; DT invariant $=\#[Hilb^P(Y)]^{vir}$.
- It comes with contributions from Hilbert scheme of points.
 Should divide out these contributions.
- ullet Maulik-Nekrasov-Okounkov-Pandharipande conjecture GW \sim DT.

Donaldson-Thomas invariant II

- DT invariants are more generally defined for any compact moduli of stable sheaves. Thomas.
- A coherent sheaf F on Y is stable if $\frac{P(F')}{r(F')} < \frac{P(F)}{r(F)}$ for $0 \neq F' < F$. $M^P(Y) = \text{q-proj moduli of stable sheaves on } Y$. Gieseker, Simpson. $[M^P(Y)]^{\text{vir}} \in A_0(M^P(Y))$
- DT invariant = $\#[M^P(Y)]^{\text{vir}} \in \mathbb{Z}$ if $M^P(Y)$ is compact.

• DT is not a pure curve counting unless g=0. If C is a smooth curve of genus g>0 in Y and $\deg P=1$, {line bundles on C} are contained in $M^P(Y)$ and contribute zero to DT.

Other invariants

- stable pair = 1-dimensional sheaf + section with stability. Pandharipande-Thomas invariant = $\#[\{stable\ pairs\}]^{vir}$ Expected to be equivalent to GW. Bridgeland, Toda DT \sim PT.
- ullet Chang-Li: stable maps to \mathbb{P}^4 with p-fields (2011). \sim GW
- Fan-Jarvis-Ruan-Witten invariant = spin curve counting (c. 2007)
 AG theory by Chang-Li-Li (2013): cosection localization (K.-J.Li).
- All these invariants enumerate curves + extra data.
- Gopakumar-Vafa (BPS) invariant was proposed as a way of pure curve counting (1998).

2 Gopakumar-Vafa invariant

We imagine:

$$M = \{(C, L) \mid C \subset Y, L \in Pic(C), [C] = \beta\} \xrightarrow{for} S = \{C \mid C \subset Y\}$$
 Can think of L as a 1-dim'l sheaf on Y .

Fiber over a smooth curve C of genus q is $Pic^d(C)$.

$$H^*(\operatorname{Pic}^d(C))=H^*(E)^{\otimes g}$$
, $E=$ elliptic curve.

$$H^*(E) = (\frac{1}{2}) \oplus 2(0)$$
 by hard Lefschetz. $H^*(\operatorname{Pic}^d(C)) = \left((\frac{1}{2}) \oplus 2(0)\right)^{\otimes g} =: I_g$

Clebsch-Gordan rule:
$$(\frac{k}{2}) \otimes (\frac{l}{2}) = (\frac{k+l}{2}) \oplus \cdots \oplus (\frac{k-l}{2})$$
 for $k \geq l$

$$\Rightarrow \{I_g\}$$
 form a basis for $Rep(sl_2)$.

We further imagine:

 \exists cohomology theory $\mathbb H$ with relative hard Lefschetz property:

$$M \xrightarrow{proj} S \xrightarrow{proj} pt$$
, $\omega_L = c_1(\mathcal{O}_{M/S}(1)), \omega_R = c_1(\mathcal{O}_S(1)).$

$$\omega_L^k : \mathbb{H}^{-k}(M) \xrightarrow{\cong} \mathbb{H}^k(M), \ \omega_R^k : \mathbb{H}^{-k}(S, -) \xrightarrow{\cong} \mathbb{H}^k(S, -).$$

We have an action of $(sl_2)_L \times (sl_2)_R$ on $\mathbb{H}(M)$.

 $\mathbb{H}(M)=\oplus_{g\geq 0}I_g\otimes R_g$ by $(sl_2)_L$ action for some vector spaces R_g . $(sl_2)_R$ acts on R_g and can write $R_g=\oplus_{k\geq 0}(\frac{k}{2})^{\oplus m_k}$.

Define the trace (Euler number) of $(\frac{k}{2})$ as $\hat{\chi}(\frac{k}{2}) = (-1)^k (k+1)$.

GV invariant: $n_g(\beta) = \chi(R_g) = \sum (-1)^k (k+1) m_k$;

may be interpreted as the Euler number $e(\Omega_S)$ of the space of curves S.

Mathematical theory?

Rigorous mathematical theory requires:

- M = suitable moduli of 1-dimensional sheaves on Y;
 S = suitable projective moduli of curves in Y;
 h: M → S projective morphism
- ullet cohomology theory ${\mathbb H}$ with relative hard Lefschetz property.

Gopakumar-Vafa predicted $GV = \{n_q(\beta) \in \mathbb{Z}\} \Rightarrow \{N_q(\beta)\} = GW$:

$$\sum_{g,\beta} N_g(\beta) q^{\beta} \lambda^{2g-2} = \sum_{k,g,\beta} n_g(\beta) \frac{1}{k} \left(2\sin(\frac{k\lambda}{2}) \right)^{2g-2} q^{k\beta}.$$

3 Proposals

S. Katz, Hosono-Saito-Takahashi, and others all agree:

M= (seminormalization of) the moduli space of stable 1-dim'l sheaves F on Y, $[F]=\beta$ and $\chi(F)=1$.

 $\mathfrak{hc}: M \to Chow^{1,\beta}(Y)$ Hilbert-Chow morphism.

 $S = \text{image of } M \text{ in } Chow^{1,\beta}(Y)$

<u>S. Katz</u> (c.2005) conjectured $n_0(\beta) = DT(M)$.

- Hosono-Saito-Takahashi (c.2001)
 proposed to use IH*(M) for the cohomology theory.
- M. Saito: IH* has relative hard Lefschetz property.
- $\chi(IH^*(M)) = \pm DT(M)$? No.

Behrend (c.2005):
$$DT(M) = \chi(M, \nu_M) = \sum_k k \cdot \chi(\nu_M^{-1}(k)).$$

$$\nu_M(x) = (-1)^{d-1}(\chi(Mil_f(x)) - 1) \text{ if } M = \text{Crit}(f) \text{ for } f: V \to \mathbb{C}$$

$$Mil_f(x) = f^{-1}(\delta) \cap B_{\epsilon}(x) \text{ for } 0 < \delta << \epsilon < 1.$$

$$\underline{\text{Ex}}$$
. $y^2 = x^3$ has isolated critical point $\chi(IH) = 1$ Milnor number 2 : $DT = 2$.

 $P^{\bullet} = (P^a \to P^{a+1} \to \cdots \to P^{b-1} \to P^b)$: bdd cx of \mathbb{Q} -sheaves.

Kashiwara: P^{\bullet} is a perverse sheaf if

- 1. $M = \sqcup M_{\alpha}$, $H^{i}(P^{\bullet})|_{M_{\alpha}}$ is locally constant;
- 2. $\dim\{x \in X \mid \mathbb{H}^i(B_{\varepsilon}(x); P^{\bullet}) \neq 0\} \leq -i \text{ for all } i;$
- 3. $\dim\{x \in X \mid \mathbb{H}^i(B_{\varepsilon}(x), B_{\varepsilon}(x) \{x\}; P^{\bullet}) \neq 0\} \leq i \text{ for all } i.$

Hypercohomology $\mathbb{H}^*(M,P^\bullet)=H^*(\Gamma(X,I^\bullet))$ where $P^\bullet\to I^\bullet$ is qis.

Beilinson-Bernstein-Deligne-Gabber: (i) Perv(M) is an abelian category. (ii) Perv(M) has gluing property: If $M = \cup U_{\alpha}$ open cover and $P_{\alpha}^{\bullet} \in Perv(U_{\alpha})$ with gluing isomorphisms $\eta_{\alpha\beta}: P_{\alpha}^{\bullet}|_{U_{\alpha\beta}} \to P_{\beta}^{\bullet}|_{U_{\alpha\beta}}$ satisfying the cocycle condition, then $\exists P^{\bullet} \in Perv(M)$ such that $P^{\bullet}|_{U_{\alpha}} \cong P_{\alpha}^{\bullet}$.

<u>M. Saito</u>: If P^{\bullet} underlies a semisimple polarizable Hodge module, then i) $\mathbb{H}^*(M, P^{\bullet})$ has relative hard Lefschetz property; ii) $h: M \to S$ projective $\Rightarrow Rh_*P^{\bullet} =$ perverse sheaf underlying semisimple

ii) $h:M\to S$ projective $\Rightarrow Rh_*P^{\bullet}=$ perverse sheaf underlying semisimple polarizable Hodge module (with shifts).

 $\mathbb{H}^*(M, P^{\bullet})$ has $sl_2 \times sl_2$ -action from $M \xrightarrow{h} S \longrightarrow pt$.

Perverse Sheaf of Vanishing Cycles

 $f:V\to\mathbb{C}$ holomorphic map on cx manifold V of dim d. $X=\mathrm{Crit}(f)=\mathrm{zero}(df).$

 $P_f^{\bullet} := R\Gamma_{\{\operatorname{Re} f \leq 0\}} \mathbb{Q}|_{f^{-1}(0)}[d] \in Perv(X)$ where $\Gamma_N I = \ker(I \to \imath_* \imath^* I)$ with $\imath : V - N \hookrightarrow V$. $H^*(P_f^{\bullet})|_x \cong \tilde{H}^{*+d-1}(Mil_f(x)).$

 $\exists \ \mathsf{mixed} \ \mathsf{Hodge} \ \mathsf{module} \ M_f^{\bullet} \ \mathsf{with} \ \mathrm{rat}(M_f^{\bullet}) = P_f^{\bullet}.$

Joyce-Song (2008): $\forall x \in M$, \exists open nbd U of $x \in M$ such that $U \cong \operatorname{Crit}(f)$ for $f: V \to \mathbb{C}$, $V = \operatorname{cx}$ mfd of dim $\dim T_x M$.

 $\underline{\text{Corollary}} \; \exists \; M = \cup_{\alpha} U_{\alpha} \; \text{open cover and perverse sheaves} \; P_{\alpha}^{\bullet} \in Perv(U_{\alpha}) \\ \text{and mixed Hodge modues} \; M_{\alpha}^{\bullet} \in MHM(U_{\alpha}).$

If \exists gluing P^{\bullet} of P_{α}^{\bullet} , then $\chi(\mathbb{H}^*(M,P^{\bullet}))=DT(M)$ by Behrend's result. (Katz conjecture)

If \exists gluing M^{\bullet} of MHMs $M_{\alpha}^{\bullet} \in MHM(U_{\alpha})$, then $\hat{M}^{\bullet} = Gr^{W}(M^{\bullet})$ is a semisimple polarizable Hodge module and $\hat{P}^{\bullet} = Gr^{W}(P^{\bullet})$ is a perverse sheaf with $\operatorname{rat}(\hat{M}^{\bullet}) = \hat{P}^{\bullet}$.

The desired properties for GV theory

 $\mathbb{H}^*(M,\hat{P}^{\bullet})$ has $sl_2 \times sl_2$ action and $\chi(\mathbb{H}^*(M,\hat{P}^{\bullet})) = DT(M)$ hold.

4 Categorification conjecture

<u>Joyce-Song</u> (2008): Can we glue $P_{\alpha}^{\bullet} \in Perv(U_{\alpha})$ to a globally defined $P^{\bullet} \in Perv(M)$? The same for mixed Hodge modules?

K.-J.Li, Brav-Bussi-Dupont-Joyce-Szendroi (2012 \sim 3): If \exists universal family $\mathcal E$ on $M\times Y$ (recall M is the moduli space of stable sheaves), then \exists gluings $P^{\bullet}\in Perv(M)$ and $M^{\bullet}\in MHM(M)$.

The issue of cocycle condition uses an argument of Okounkov on the existence of a square root of $\det Ext(\mathcal{E},\mathcal{E})$.

Idea of proof

Seidel-Thomas twists: May assume that all sheaves are vector bundles.

$$0 \to \mathcal{E}_1 \to H^0(\mathcal{E}(m)) \otimes \mathcal{O}(-m) \to \mathcal{E} \to 0 \text{ for } m >> 0.$$

Do the same to get \mathcal{E}_2 , \mathcal{E}_3 . Then \mathcal{E}_3 is a family of vector bundles.

$$\mathcal{E}$$
, \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{E}_3 have same deformation theories.

Donaldson-Thomas: holomorphic Chern-Simons theory.

Fix a hermitian complex vector bundle E.

$$\mathcal{A} = \{\overline{\partial}: \Omega^0(E) \to \Omega^{0,1}(E) \mid \text{Leibniz}, \mathbb{C}\text{-linear}\} = \overline{\partial} + \Omega^{0,1}(\text{End } E)$$

$$\overline{\partial}_{\alpha} := \overline{\partial} + a \in A$$

 $\overline{\partial}_a$ is integrable iff $F^{0,2}(\overline{\partial}_a) = \overline{\partial}a + a \wedge a = 0$.

Holomorphic CS functional

$$CS(a) = \frac{1}{8\pi^2} \int_Y (a \wedge \overline{\partial}a + \frac{2}{3}a \wedge a \wedge a) \wedge \sigma.$$

 $\operatorname{Crit}(CS) = \operatorname{zero}(F^{0,2}(\overline{\partial}_a)) = \{ \operatorname{holomorphic structures on } E \}$ $M = \operatorname{Crit}(CS)/\mathcal{G} \subset \mathcal{A}/\mathcal{G} = \mathcal{B}.$

Joyce-Song:
$$V = \{\overline{\partial}_a \mid \overline{\partial}^* a = 0 = \overline{\partial}^* F^{0,2}(\overline{\partial}_a), |a| < \epsilon\} \subset \mathcal{A}$$
 cx mfd of dim $\dim T_x M$.

$$f=CS|_V:V o \mathbb{C},\, \mathrm{Crit}(f)=V\cap \mathrm{Crit}(CS).$$
 Joyce-Song chart.

$$\begin{split} \overline{\partial}^* a &= 0 = \overline{\partial}^* F^{0,2}(\overline{\partial}_a) \Leftrightarrow \overline{\partial} \overline{\partial}^* a = 0, \ \overline{\partial}^* (\overline{\partial} a + a \wedge a) = 0 \\ \Leftrightarrow L_{\overline{\partial}}(a) &= (\overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial}) a + \overline{\partial}^* (a \wedge a) = 0. \ \text{Elliptic op.} \end{split}$$

Can find a subspace $\Xi \subset \Omega^{0,1}(\operatorname{End} E)$ such that $\ker \Delta_{\overline{\partial}} \subset \Xi$ and CS_2 is nondegenerate on $\Xi/\ker \Delta_{\overline{\partial}}$. Define

$$V_{\Xi} = \{ \overline{\partial}_a \, | \, L_{\overline{\partial}}(a) \in \Xi, |a| < \epsilon \}, \quad f = CS|_{V_{\Xi}}$$

hol ftn on cx mfd of dim $\dim \Xi$. We call (V,f) a CS chart.

Continuous family of CS charts \mathcal{V}_{α} (with local triviality) on open U_{α} and homotopy of CS charts on $U_{\alpha\beta}$ give gluing isoms $\eta_{\alpha\beta}: P_{\alpha}^{\bullet}|_{U_{\alpha\beta}} \to P_{\beta}^{\bullet}|_{U_{\alpha\beta}}$.

Cocycle condition \Leftrightarrow existence of square root of $\det Ext(\mathcal{E},\mathcal{E})$.

Gopakumar-Vafa invariant

- P^{\bullet} = perverse sheaf on M underlying a MHM.
- $\hat{P}^{\bullet} = \operatorname{Gr}^W P^{\bullet}$ direct sum of the graded parts by the weight filtration $\Rightarrow \mathbb{H}^*(M, \hat{P}^{\bullet})$ has hard Lefschetz and $sl_2 \times sl_2$ action $\Rightarrow \operatorname{GV} \left(\operatorname{BPS} \right)$ invariant $n_g(\beta)$. [K.-J.Li]
- K.-J.Li $n_0(\beta) = DT(M)$

Hosono-Saito-Takahashi

$$\sum_{g,\beta} N_g(\beta) q^{\beta} \lambda^{2g-2} = \sum_{k,g,\beta} n_g(\beta) \frac{1}{k} \left(2\sin(\frac{k\lambda}{2}) \right)^{2g-2} q^{k\beta}$$

holds for elliptic K3 fibered Calabi-Yau 3-folds, CY3 in Weierstrass model $\pi:Y\to S$ over del Pezzo surface with elliptic general fiber F.

• Thomas: Checked our GV theory is compatible with conjectural Katz-Klemm-Pandharipande formula (2014) for motivic BPS invariant (Choi-Katz-Klemm, 2012).

Conjectural wall crossing formula

$$n_g^+(\beta) - n_g^-(\beta) = (-1)^{\chi - 1} \chi \cdot \sum_{i=1}^g n_h(\beta_1) n_{g-h}(\beta_2)$$

for
$$\beta = \beta_1 + \beta_2$$
, $\chi = \chi(E_1, E_2)$.

Thank you for your attention!